
F2. Initializations
    FaceIt-based programs always contain a few lines of code devoted to initialization followed
by a "main event loop".    The following program, for example, would automatically support 
access to Desk Accessories, interact properly with MultiFinder and System 7, and support 
several standard menu items (Pascal source):
 fRec.uName := 'Minimum.Rsrc';
 FaceIt(nil,DoInit,0,0,0,0);
 repeat
    FaceIt(nil,DoLoop,0,0,0,0);
 until false;
where the DoInit and DoLoop commands are described in the "Program Commands" topic in 
the "Commands" menu, and the "Minimum.Rsrc" file contains the MENU resources loaded by
FaceIt plus the LoadIt module needed to call FaceWare modules.
    The simplicity of the above example program is one of the distinguishing characteristics of
programming with FaceIt.    Nearly all additional code that you add to a program will be 
program-specific, making a "code generator" unnecessary when programming with FaceIt.
    The remainder of this topic discusses the major initializations that are automatically done 
by FaceIt on DoInit.    Each of these can be disabled by simply removing the associated 
resources from the program's resource file.    Other initialization-related actions taken by 
FaceIt can be optionally disabled with bit flags passed in parameters a and c when calling 
DoInit (described under DoInit in "Program Commands" topic in the "Commands" menu).

Menu Initialization
    Nearly all Mac programs make use of the main menu bar at the top of the main screen.    
The pull-down menus in this bar are always available unless they have been disabled by the 
program or a modal window has been opened.    Menus in the main menu bar often contain 
hierarchical menu items attached to hierarchical menus, and windows often contain pop-up 
menus.    FaceIt and ViewIt provide complete support for initialization and management of all 
three of these common menu types.
• Auto-Loaded Menus
    When DoInit is called, FaceIt looks for MENU resources in the program file or the program's
temporary resource file (w/ file name = uName) and automatically initializes and installs 
these if they have been properly numbered.    FaceIt searches for MENU resources with res 
IDs starting at 1001, 1002, ..., that have menu IDs of 101, 102, ... (menu ID = res ID - 900).    
MENUs continue to be loaded until 6 consecutive res IDs are encountered that do not have 
associated MENU resources (so you can leave gaps in your res ID numbering for later 
additions).
    MENU resources can be created and edited using Apple's ResEdit resource editor (included
on the FaceWare Utilities disk if you purchased ViewIt).    The "menu ID" of each MENU 
resource can be set by opening the "Edit Menu & MDEF ID" dialog in ResEdit.    The following 
table reviews how menu ID numbers are used in FaceIt-based programs:
    101-190 - recommended for main program menus
    191-195 - reserved for temporary use by drivers
    196-199 - reserved for ViewIt's FSSC menus
    236-255 - reserved for use by ViewIt controls & DAs
where the range of menu IDs 101-190 would correspond to program MENU resources with 
res IDs 1001-1090.
    What To Do:    Most programmers begin programming with a copy of a demo resource file 
that already contains Apple, File, Edit, and Window menus (corresponding to resource IDs 
1001-1004 and menu IDs 101-104).    They then use ResEdit to modify these menus and/or 
to add new menus to support program-specific options.    REMEMBER:    When adding a new 
menu that you want FaceIt to auto-load, don't forget to set its menu ID to res ID - 900 or 
FaceIt won't load it.
• Hierarchical Menus
    Hierarchical menus can also be auto-loaded by FaceIt.    The only difference between these 



menus and menu bar menus is that (1) the first character of their menu titles should be a 
"+"    or "-" to inform FaceIt that the menu is not a menu bar menu (don't worry, this 
character is never displayed), and (2) there should be at least one menu item in another 
menu that is linked to this hierarchical menu.    ResEdit can be used to establish the link by 
checking the "has Submenu" option when editing the hierarchical menu item and then 
entering the menu ID (not the res ID!) of the linked menu.
    Hierarchical menus work best if they are numbered in the same, orderly manner as that 
described above for menu bar menus.    For example, if MENU 1005 (menu ID 105) has 3 
hierarchical menu items, then the associated hierarchical MENUs might be numbered 1006, 
1007, 1008 (menu IDs 106, 107, 108), with the next main menu bar MENU being numbered 
1009 (menu ID 109).
    ResEdit Bug:    The "Open Submenu" option in ResEdit only works if the submenu's 
resource ID is equal to its menu ID, which will not be the case for menus auto-loaded by 
FaceIt.
• Pop-Up Menus
    Pop-up menus are similar to hierarchical menus but are usually not linked to hierarchical 
menu items.    Rather, they must be "popped up" by calling "PopUpMenuSelect" (or the utility
command PopMen). In most cases, however, pop-up menus used by FaceIt-based programs 
are those supported by menu controls in ViewIt windows, and these are both initialized and 
managed by control drivers without the need for the main program to call PopUpMenuSelect.
    In cases where your program must initialize and manage the pop-up menu without ViewIt's
help, FaceIt can still be used to auto-load the menu by assigning it a res ID and menu ID in 
accordance with the scheme presented above, and by setting the first character in its title to
"+" or "-" (as with hierarchical menus).    If such a program-managed pop-up contains 
standard items, then FaceIt's DoMenu command should be used to process items selected 
from the menu.

Window Initialization
• Main Help Window
    If ViewIt's on-line help and editing resources are available, FaceIt will attempt to open the 
main ViewIt Help window.    This feature can be disabled by adding 64 to parameter c when 
calling DoInit (as described under DoInit in the "Program Commands" topic) but is not 
something that most programmers worry about since finished programs will usually not 
contain the on-line help resources required to open the help window.
• Splash Screen
    FaceIt opens a default "splash screen" when DoInit is called.    To replace this splash screen 
with your own, create a new FWND resource and name the resource "Splash" (any resource 
ID).    FaceIt will then use this "Splash" FWND in place of its own when opening the splash 
window.    Note that your splash window should not have a title bar, and its title (set in 
ViewIt's Window dialog) should be equal to the minimum time in seconds that FaceIt should 
keep the splash screen open.    To prevent any splash screen from being shown, add 32 to 
parameter c when calling DoInit.

Palette Initialization
    The scheme used by Apple to designate colors on a Mac that supports Color QuickDraw 
allows you to choose from any one of 16 million colors.    Unfortunately, you are not always 
able to display this many colors, and which of these can be displayed is determined by the 
"depth" of your screen and the current color "palette".    The screen depths supported by 
Color QuickDraw are 1, 2, 4, 8, 16, and 32 bits per pixel, corresponding to 2, 4, 16, 256, 
32768, and 16 million displayable colors (only 15/16 and 24/32 bits are used to define RGB 
colors at the higher screen depths).
    Each program has a "program-wide color palette" which determines which colors will be 
displayed from the 16 million possible red, green, and blue combinations.    If necessary, you 
can use the utility command SetPal to change the colors in this palette (described under 



SetPal in "Color Utilities"), but this will only be necessary if you need a large number of 
colors that are not available in the default palette (such as 256 shades of gray).    
Experienced programmers can also obtain a handle to the current program-wide palette by 
calling "GetPalette" with an argument of -1 (i.e., "GetPalette(WindowPtr(-1))").    This handle 
can then be used with other Color QuickDraw calls to directly manipulate the contents of the
palette.
    What To Do:    The only programmers who need worry about resetting the program-wide 
palette are those whose programs need to define a large fraction of the displayable colors 
(such as 256 shades of gray on an 8-bit deep monitor).


